Classical hypercorrelation and wave-optics analogy of quantum superdense coding
نویسندگان
چکیده
We report the first experimental realization of classical hypercorrelation, correlated simultaneously in every degree of freedom (DOF), from observing a Bell-type inequality violation in each DOF: polarization and orbital angular momentum (OAM). Based on such a classical hypercorrelation, we have realized the analogy of quantum superdense coding in classical optics. Comparing it with quantum superdense coding using pairs of photons simultaneously entangled in polarization and OAM, we find that it exhibits many advantages. It is not only very convenient to realize in classical optics, the attainable channel capacity in the experiment for such a superdense coding can also reach 3 bits, which is higher than that (2.8 bits) of usual quantum one. Our findings can not only give novel insight into quantum physics, they may also open a new field of applications in the classical optical information process.
منابع مشابه
Public and private resource trade-offs for a quantum channel
Collins and Popescu realized a powerful analogy between several resources in classical and quantum information theory. The Collins-Popescu analogy states that public classical communication, private classical communication, and secret key interact with one another somewhat similarly to the way that classical communication, quantum communication, and entanglement interact. This paper discusses t...
متن کاملClassical information capacity of superdense coding
Classical communication through quantum channels may be enhanced by sharing entanglement. Superdense coding allows the encoding, and transmission, of up to two classical bits of information in a single qubit. In this paper, the maximum classical channel capacity for states that are not maximally entangled is derived. Particular schemes are then shown to attain this capacity, firstly for pairs o...
متن کاملParticle-wave duality: a dichotomy between symmetry and asymmetry
Symmetry plays a central role in many areas of modern physics. Here, we show that it also underpins the dual particle and wave nature of quantum systems. We begin by noting that a classical point particle breaks translational symmetry, whereas a wave with uniform amplitude does not. This provides a basis for associating particle nature with asymmetry and wave nature with symmetry. We derive exp...
متن کاملvon Neumann capacity of noisy quantum channels
We discuss the capacity of quantum channels for information transmission and storage. Quantum channels have dual uses: they can be used to transmit known quantum states which code for classical information, and they can be used in a purely quantum manner, for transmitting or storing quantum entanglement. We propose here a definition of the von Neumann capacity of quantum channels, which is a qu...
متن کاملSuperdense Coding Interleaved with Forward Error Correction
Superdense coding promises increased classical capacity and communication security but this advantage may be undermined by noise in the quantum channel. We present a numerical study of how forward error correction (FEC) applied to the encoded classical message can be used to mitigate against quantum channel noise. By studying the bit error rate under different FEC codes, we identify the unique ...
متن کامل